Skip to contents

This automates the process of:

  1. Checking what data is available to create subsets

  2. Make the subset

Usage

armadillo.subset(
  input_source = NULL,
  subset_def = NULL,
  source_project = NULL,
  source_folder = NULL,
  source_table = NULL,
  target_project = NULL,
  target_folder = NULL,
  target_table = NULL,
  target_vars = NULL,
  new_project = NULL,
  dry_run = NULL
)

Arguments

input_source

Character specifying how information about the target view is provided: choose 'subset_def' if providing a subset definition object, or 'arguments' if providing information directly.

subset_def

R object containing subset definition created by armadillo.subset_definition(). Compulsory if input_source = 'subset_def'

source_project

project from which to subset data

source_folder

folder from which to subset data. Compulsory if input_source = 'arguments'.

source_table

table from which to subset data. Compulsory if input_source = 'arguments'.

target_project

project to upload subset to. Will be created if it doesn't exist.

target_folder

folder to upload subset to. Will be created if it doesn't exist. Compulsory if input_source = 'arguments'.

target_table

table to upload subset to. Compulsory if input_source = 'arguments'.

target_vars

variables from `source_table` to include in the view. Compulsory if input_source = 'arguments'.

new_project

Deprecated: use target_project instead

dry_run

Defunct: previously enabgled dry-run to check which variables are missing

Value

missing variables provided in the subset definition

Examples

if (FALSE) { # \dontrun{
armadillo.subset(
  source_project = "gecko",
  target_project = "study1",
  subset_def = local_subset
)
} # }