This automates the process of:
Checking what data is available to create subsets
Make the subset
Usage
armadillo.subset(
input_source = NULL,
subset_def = NULL,
source_project = NULL,
source_folder = NULL,
source_table = NULL,
target_project = NULL,
target_folder = NULL,
target_table = NULL,
target_vars = NULL,
new_project = NULL,
dry_run = NULL,
strict = FALSE
)
Arguments
- input_source
Character specifying how information about the target view is provided: choose 'subset_def' if providing a subset definition object, or 'arguments' if providing information directly.
- subset_def
R object containing subset definition created by
armadillo.subset_definition()
. Compulsory if input_source = 'subset_def'- source_project
project from which to subset data
- source_folder
folder from which to subset data. Compulsory if input_source = 'arguments'.
- source_table
table from which to subset data. Compulsory if input_source = 'arguments'.
- target_project
project to upload subset to. Will be created if it doesn't exist.
- target_folder
folder to upload subset to. Will be created if it doesn't exist. Compulsory if input_source = 'arguments'.
- target_table
table to upload subset to. Compulsory if input_source = 'arguments'.
- target_vars
variables from `source_table` to include in the view. Compulsory if input_source = 'arguments'.
- new_project
Deprecated: use
target_project
instead- dry_run
Defunct: previously enabgled dry-run to check which variables are missing
- strict
Boolean specifying whether to create subset if one or more target variables do not exist in the target data. Option FALSE will throw and error, option TRUE (default) creates subset and return a warning